题目内容
已知函数, 其中且
(Ⅰ)讨论函数的单调性;
(Ⅱ)设函数 (e是自然对数的底数),是否存在a,使g(x)在[a,-a]上是减函数?若存在,求a的取值范围;若不存在,请说明理由.
(Ⅰ)的定义域为,
(1)若-1<a<0,则当0<x<-a时,;当-a <x<1时,;当x>1时,.故分别在上单调递增,在上单调递减.
(2)若a<-1,仿(1)可得分别在上单调递增,在上单调递减.
(Ⅱ)存在a,使g(x)在[a,-a]上是减函数.
事实上,设,则
,再设,则当g(x)在[a,-a]上单调递减时,h(x)必在[a,0]上单调递,所以,由于,因此,而,所以,此时,显然有g(x)在[a,-a]上为减函数,当且仅当在[1,-a]上为减函数,h(x)在[a,1上为减函数,且,由(Ⅰ)知,当a<-2时,在上为减函数 ①
又 ②
不难知道,
因,令,则x=a或x=-2,而
于是 (1)当a<-2时,若a <x<-2,则,若-2 <x<1,则,因而分别在上单调递增,在上单调递减;
(2)当a=-2时, ,在上单调递减.
综合(1)(2)知,当时,在上的最大值为,所以, ③
又对,只有当a=-2时在x=-2取得,亦即只有当a=-2时在x=-2取得.
因此,当时,h(x)在[a,1上为减函数,从而由①,②,③知
综上所述,存在a,使g(x)在[a,-a]上是减函数,且a的取值范围为.
练习册系列答案
相关题目