题目内容
17.已知复数z满足(1+i)z=2i(i为虚数单位),则|z|=( )A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
分析 直接利用复数两边求模的运算法则求解即可.
解答 解:复数z满足(1+i)z=2i,
则:|(1+i)||z|=|2i|,
可得$\sqrt{2}$|z|=2,
∴|z|=$\sqrt{2}$..
故选:C
点评 本题考查复数的模的求法,基本知识的考查.
练习册系列答案
相关题目
5.已知执行如图所示的程序框图,输出的S=485,则判断框内的条件可以是( )
A. | k<5? | B. | k>7? | C. | k≤5? | D. | k≤6? |
12.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图直方图:
(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)若直方图中前三组的频数成等比数列,后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
是否近视 年级名次 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
2.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,斜率为$\sqrt{3}$的直线l经过双曲线Γ的右焦点F2与双曲线Γ在第一象限交于点,若△PF1F2是等腰三角形,则双曲线Γ的离心率为( )
A. | $\sqrt{3}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{3}-1}{2}$ | D. | $\frac{\sqrt{3}+1}{2}$ |