题目内容
设函数的定义域为,若满足条件:存在,使在上的值域是,则成为“倍缩函数”,若函数为“倍缩函数”,则的范围是( )
A.(,) B.(,)
C.(,) D.(,)
在锐角中,设角所对边分别为,.
(1)求证:;
(2)若,求的值.
“城市呼唤绿化”,发展园林绿化事业是促进国家经济法阵和城市建设事业的重要组成部分,某城市响应城市绿化的号召,计划建一如图所示的三角形形状的主题公园,其中一边利用现成的围墙,长度为米,另外两边,使用某种新型材料围成,已知,,(,单位均为米).
⑴求,y满足的关系式(指出,的取值范围);
⑵在保证围成的是三角形公园的情况下,如何设计能使所用的新型材料总长度最短?最短长度是多少?
已知集合则( )
A. B.
C. D.
已知函数,有下列4个结论:
①函数的图像关于轴对称;
②存在常数,对任意的实数,恒有成立;
③对于任意给定的正数,都存在实数,使得;
④函数的图像上存在无数个点,使得该函数在这些点处的切线与轴平行;
其中,所有正确结论的序号为 .
已知函数,当时,不等式恒成立,则实数的取值范围为( )
(选修4-5:不等式选讲)
若实数满足,求的最小值.
设双曲线的一条渐近线的倾斜角为,则该双曲线的离心率为 .
设为所在平面内一点,,若,则 .