题目内容
设ΔABC的三边长分别为,ΔABC的面积为S,内切圆半径为r,则r=
;类比这个结论可知:四面体P-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体P-ABC的体积为V,则R=( )
A. B.
C.
D.
B
【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为,因此可知R=
,选B