题目内容

【题目】以圆x2+y2﹣2x﹣2y﹣1=0内横坐标与纵坐标均为整数的点为顶点的三角形的个数为(
A.76
B.78
C.81
D.84

【答案】A
【解析】解:∵圆x2+y2﹣2x﹣2y﹣1=0化成标准形式,得 (x﹣1)2+(y﹣1)2=3
∴圆心C(1,1),半径r=
满足横坐标与纵坐标均为整数的点,且在圆内的点有
(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),
(2,0),(2,1),(2,2)共9个点
9个点中任取3个,共有 =84种取法,其中三点共线的情况共有8种
∴这9个点能构成三角形的个数为84﹣8=76个
故选:A

【考点精析】利用圆的一般方程对题目进行判断即可得到答案,需要熟知圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网