题目内容
样本容量为1000的频率分布直方图如图所示.根据样本的频率分布直方图计算,x的值为 ,样本数据落在内的频数为 .
0.09,680
解析
某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多。求:(1)根据以上数据建立一个列联表;(2)试问喜欢电脑游戏与认为作业多少是否有关系?
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.
某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元,未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如下图所示.该同学为这个开学季购进了160盒该产品,以X(单位:盒,100≤X≤200)表示这个开学季内的市场需求量,Y(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量X的平均数和众数;(2)将Y表示为X的函数;(3)根据直方图估计利润不少于4800元的概率.
某单位200名职工的年龄分布情况如下图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人. k*s5u第12题图
一个总体分为A、B两层,其个体数之比为4:1 ,用分层抽样法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个体数是 ;
某区有200名学生参加数学竞赛,随机抽取10名学生成绩如下:
某个容量为的样本的频率分布直方图如下,则在区间上的数据的频数为 .
为迎接6月6日的“全国爱眼日”,某高中学生会从全体学生中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图,若视力测试结果不低于5.0,则称为“好视力”.(1)写出这组数据的众数和中位数;(2)从这16人中随机选取3人,求至少有2人是“好视力”的概率;(3)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.