题目内容

6.已知函数f(x)=x2ex对区间(a,a+1)内存在极值点,则实数a的取值范围是(  )
A.(-3,-1)∪(0,2)B.(-3,-2)∪(-1,0)C.(-2,-1)∪(0,3)D.(-3,-2)∪(0,1)

分析 通过求导函数,函数的极值点,利用函数f(x)=x2ex在区间(a,a+1)上存在极值点,建立不等式,即可求实数a的取值范围.

解答 解:函数f(x)=x2ex的导数为y′=2xex+x2ex =xex(x+2),
令y′=0,则x=0或-2,
-2<x<0上单调递减,(-∞,-2),(0,+∞)上单调递增,
∴0或-2是函数的极值点,
∵函数f(x)=x2ex在区间(a,a+1)上存在极值点,
∴a<-2<a+1或a<0<a+1,
∴-3<a<-2或-1<a<0.
实数a的取值范围是:(-3,-2)∪(-1,0).
故选:B.

点评 本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网