题目内容
已知M(1+cos2x,1),![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_ST/1.png)
(1)求y关于x的函数关系式y=f(x);
(2)求函数y=f(x)的单调区间;
(3)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_ST/2.png)
【答案】分析:(1)利用向量数量积的定义可得![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/0.png)
(2)利用和差角公式可得
,分别令![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/2.png)
分别解得函数y=f(x)的单调增区间和减区间
(3)由
求得
,结合三角函数的性质求最大值,进而求出a的值
解答:解:(1)
,
所以
.
(2)由(1)可得
,
由
,解得
;
由
,解得
,
所以f(x)的单调递增区间为
,
单调递减区间为
.
(3)
,
因为
,
所以
,
当
,即
时,f(x)取最大值3+a,
所以3+a=4,即a=1.
点评:本题以向量的数量积为载体考查三角函数y=Asin(wx+∅)的性质,解决的步骤是结合正弦函数的相关性质,让wx+∅作为整体满足正弦函数的中x所满足的条件,分别解出相关的量.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/0.png)
(2)利用和差角公式可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/2.png)
分别解得函数y=f(x)的单调增区间和减区间
(3)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/4.png)
解答:解:(1)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/5.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/6.png)
(2)由(1)可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/7.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/9.png)
由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/11.png)
所以f(x)的单调递增区间为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/12.png)
单调递减区间为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/13.png)
(3)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/14.png)
因为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/15.png)
所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/16.png)
当
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221142268097481/SYS201311012211422680974020_DA/18.png)
所以3+a=4,即a=1.
点评:本题以向量的数量积为载体考查三角函数y=Asin(wx+∅)的性质,解决的步骤是结合正弦函数的相关性质,让wx+∅作为整体满足正弦函数的中x所满足的条件,分别解出相关的量.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目