题目内容
已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N* )展开式中含x奇次幂的系数和.(1)求数列{an}的通项公式;
(2)设f(n)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/3.png)
(3)证明:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_ST/8.png)
【答案】分析:(1)记(1+2x)2n=a+a1x+…+a2nx2n,利用赋值可分别令x=1得:32n=a+a1+…+a2n,令x=-1得:1=a-a1+a2-a3+…-a2n-1+a2n两式相减得:32n-1=2(a1+a3+…+a2n-1),从而可求
(2)由(1)可得
,注意到f(n)+f(1-n)=
,从而可考虑利用倒序相加求和即可
(3)由
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/3.png)
=
,故可以利用裂项求和先求和,然后利用二展开式进行放缩可证
解答:解:(1)记(1+2x)2n=a+a1x+…+a2nx2n
令x=1得:32n=a+a1+…+a2n
令x=-1得:1=a-a1+a2-a3+…-a2n-1+a2n
两式相减得:32n-1=2(a1+a3+…+a2n-1)
∴
(2分)
当n≥2时,an=Sn-Sn-1=4×9n-1
当n=1时,a1=S1=4,适合上式
∴an=4×9n-1(4分)
(2)![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/6.png)
注意到
=
(6分)
令![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/9.png)
则T=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/10.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/12.png)
故
,即f(0)+f(
)+f(
)+…+f(
)=
(8分)
(3)
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/19.png)
=
(n≥2)(10分)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/21.png)
=
(12分)
∵9n-1=(8+1)n-1=Cn1×8+Cn2×82+…+Cnn8n
=8(4n2-3n)
从而可得,
+
+…+
≥
(1-
).(14分)
点评:本题主要考查了利用赋值法求二项展开式的系数,及数列求和中的倒序相加、裂项求和等方法的应用,还要注意放缩法在证明不等式中的应用.
(2)由(1)可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/1.png)
(3)由
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/3.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/4.png)
解答:解:(1)记(1+2x)2n=a+a1x+…+a2nx2n
令x=1得:32n=a+a1+…+a2n
令x=-1得:1=a-a1+a2-a3+…-a2n-1+a2n
两式相减得:32n-1=2(a1+a3+…+a2n-1)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/5.png)
当n≥2时,an=Sn-Sn-1=4×9n-1
当n=1时,a1=S1=4,适合上式
∴an=4×9n-1(4分)
(2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/6.png)
注意到
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/8.png)
令
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/9.png)
则T=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/10.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/12.png)
故
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/17.png)
(3)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/19.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/20.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/21.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/22.png)
∵9n-1=(8+1)n-1=Cn1×8+Cn2×82+…+Cnn8n
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/23.png)
从而可得,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024183512148417041/SYS201310241835121484170020_DA/28.png)
点评:本题主要考查了利用赋值法求二项展开式的系数,及数列求和中的倒序相加、裂项求和等方法的应用,还要注意放缩法在证明不等式中的应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |