题目内容
设平面内的向量
=(1,7),
=(5,1),
=(2,1),点P是直线OM上的一个动点,求当
•
取最小值时,
的坐标及∠APB的余弦值.
OA |
OB |
OM |
PA |
PB |
OP |
由题意,可设
=(x,y),∵点P在直线OM上,
∴
与
共线,而
=(2,1),
∴x-2y=0,即x=2y,故
=(2y,y),
又
=
-
=(1-2y,7-y),
=
-
=(5-2y,1-y),
所以
•
=(1-2y)(5-2y)+(7-y)(1-y)=5y2-20y+12,
当y=-
=2时,
•
=5y2-20y+12取最小值-8,
此时
=(4,2),
=(-3,5),
=(1,-1),
∴cos∠APB=
=
=-
OP |
∴
OP |
OM |
OM |
∴x-2y=0,即x=2y,故
OP |
又
PA |
OA |
OP |
PB |
OB |
OP |
所以
PA |
PB |
当y=-
-20 |
2×5 |
PA |
PB |
此时
OP |
PA |
PB |
∴cos∠APB=
| ||||
|
|
-8 | ||||
|
4
| ||
17 |
练习册系列答案
相关题目