题目内容

设平面内的向量
OA
=(-1,-3)
OB
=(5,3)
OM
=(2,2)
,点P在直线OM上,且
PA
PB
=16

(Ⅰ)求
OP
的坐标;
(Ⅱ)求∠APB的余弦值;
(Ⅲ)设t∈R,求|
OA
+t
OP
|
的最小值.
(Ⅰ)设
OP
=(x,y)

由点P在直线OM上,可知
OP
OM
共线.
OM
=(2,2),
所以2x-2y=0,即x=y,有
OP
=(x,x)

PA
=
OA
-
OP
=(-1-x,-3-x)
PB
=
OB
-
OP
=(5-x,3-x)

所以
PA
PB
=(-1-x)(5-x)+(-3-x)(3-x)

PA
PB
=2x2-4x-14

PA
PB
=16
,所以2x2-4x-14=16.
可得x=5或-3.
所以
OP
=(5,5)
或(-3,-3).…(4分)
OP
=(5,5)
时,
PA
=(-6,-8),
PB
=(0,-2)
满足
PA
PB
=16

OP
=(3,3)
时,
PA
=(-4,-6),
PB
=(2,0)
不满足
PA
PB
=16

所以
OP
=(5,5)

(Ⅱ)由
PA
=(-6,-8),
PB
=(0,-2)

可得|
PA
|=10,|
PB
|=2

PA
PB
=16

所以cos∠APB=
PA
PB
|
PA
|•|
PB
|
=
16
10×2
=
4
5
.…(8分)
(Ⅲ)
OA
+t
OP
=(-1+5t,-3+5t)
|
OA
+t
OP
|=
50t2-40t+10

t=
2
5
时,|
OA
+t
OP
|
的最小值是
2
.         …(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网