题目内容

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,\直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
(1)设椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),
由已知,得
a2
c
=4
a2
c
-c=3
a=2
c=1
∴b=
3

所以椭圆C的方程为
x2
4
+
y2
3
=1.
(2)由
PF
PM
=e=
1
2
,得PF=
1
2
PM.∴PF≠PM.
①若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF不可能与PM相等.
②若FM=PM,设P(x,y)(x≠±2),则M(4,y).
32+y2
=4-x,∴9+y2=16-8x+x2,又由
x2
4
+
y2
3
=1,得y2=3-
3
4
x2
∴9+3-
3
4
x2=16-8x+x2,∴
7
4
x2-8x+4=0.∴7x2-32x+16=0.
∴x=
4
7
或x=4.∵x∈(-2,2),∴x=
4
7
.∴P(
4
7
,±
3
15
7
).
综上,存在点P(
4
7
,±
3
15
7
),使得△PFM为等腰三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网