题目内容

已知定义在R上的函数f(x)满足:
①对任意的实数x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y);
②f(1)=2;
③f(x)在[0,1]上为增函数.
(Ⅰ)求f(0)及f(-1)的值;
(Ⅱ)判断函数f(x)的奇偶性,并证明;
(Ⅲ)(说明:请在(ⅰ)、(ⅱ)问中选择一问解答即可.)
(ⅰ)设a,b,c为周长不超过2的三角形三边的长,求证:f(a),f(b),f(c)也是某个三角形三边的长;
(ⅱ)解不等式f(x)>1.
分析:(Ⅰ)赋值法:由①取x=y=0,可求得f(0),取x=-1,y=1及条件②可求得f(-1);
(Ⅱ)由(Ⅰ)猜测函数f(x)是奇函数,在①中取x=-1,根据奇函数定义即可证明;
(Ⅲ)因为a,b,c为周长不超过2的三角形三边的长度,所以0<a,b,c<1,不妨设c≥b≥a,由条件③得f(c)≥f(b)≥f(a)>0,只需证f(a)+f(b)>f(c),由a,b,c为周长不超过2的三角形三边的长度可得1≥1-
b-a
2
>1-
c
2
>0,由f(x)在[0,1]上的单调性及①即可证明;
解答:解:(Ⅰ)因为对任意的实数x,y,有f(x+y+1)=f(x-y+1)-f(x)f(y),
取x=y=0,得f(1)=f(1)-[f(0)]2,解得f(0)=0,
取x=-1,y=1,得f(1)=f(-1)-f(-1)f(1),
又f(1)=2,所以2=f(-1)-2f(-1),解得f(-1)=-2,
所以f(-1)=-2;
(Ⅱ)由(Ⅰ)猜测函数f(x)是奇函数,证明如下:
取x=-1,得f(y)=f(-y)-f(-1)f(y),即f(y)=f(-y)+2f(y),
所以f(-y)=-f(y),即对任意实数y,有f(-y)=-f(y);
所以函数f(x)为奇函数;
(Ⅲ)(i)证明:因为a,b,c为周长不超过2的三角形三边的长度,
所以0<a,b,c<1,不妨设c≥b≥a,由条件③得f(c)≥f(b)≥f(a)>0,
为了证明“f(a),f(b),f(c)也是三角形三边的长”,只需证f(a)+f(b)>f(c),
因为a,b,c为周长不超过2的三角形三边的长度,所以1>
a+b
2
c
2
>0,1≥1-
b-a
2
>1-
c
2
>0,
又因为f(x)在[0,1]上为增函数,所以f(
a+b
2
)>f(
c
2
)>0,f(1-
b-a
2
)>f(1-
c
2
)>0,
所以f(a)+f(b)=f(a)-f(-b)=f(1-
b-a
2
)•f(
a+b
2
)>f(1-
c
2
)•f(
c
2
)=f(2-c)-f(2),
在①中取x=0,y=1得f(2)=f(0);取x=0,y=1-c得f(2-c)=f(c);
点评:本题考查函数的奇偶性、单调性的综合,考查学生综合运用所学知识分析问题解决问题的能力,对能力要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网