题目内容
【题目】在下列命题中,正确命题的序号为 (写出所有正确命题的序号).
①函数的最小值为;
②已知定义在上周期为4的函数满足,则一定为偶函数;
③定义在上的函数既是奇函数又是以2为周期的周期函数,则;
④已知函数,则是有极值的必要不充分条件;
⑤已知函数,若,则.
【答案】②③⑤
【解析】
试题对于①,函数中,当时,在在为单调递增函数,不存在最小值,故①错误;对于②,又定义在上周期为的函数,为偶函数,故②正确;对于③,因为定义在上的函数是奇函数又是以为周期,,,
,故③正确;对于④要使有极值,则方程一定有两个不相等的根,即当时,,
,充分性成立,反之不然,是有极值的充分不必要条件,故命题④错误;对于命题⑤为上的增函数,又为上的奇函数,若即时,故⑤正确,综上所述,正确的命题序号为②③⑤,故答案为②③⑤.
练习册系列答案
相关题目
【题目】已知A,B,C三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).
A班 | 6 | 6.5 | 7 | |
B班 | 6 | 7 | 8 | |
C班 | 5 | 6 | 7 | 8 |
(1)试估计C班学生人数;
(2)从A班和B班抽出来的学生中各选一名,记A班选出的学生为甲,B班选出的学生为乙,若学生锻炼相互独立,求甲的锻炼时间大于乙的锻炼时间的概率.