题目内容
5、f(x)是定义在R上的以3为周期的偶函数,且f(2)=0.则方程f(x)=0在区间(0,6)内解的个数的最小值是( )
分析:根据题意,由f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,可得f(-2)=0,重复利用函数的周期性,看在区间(0,6)内,还能推出哪些数的函数值等于0.
解答:解:∵f(x)是定义在R上的偶函数,且周期是3,f(2)=0,∴f(-2)=0,
∴f(5)=f(2)=0,f(1)=f(-2)=0,f(4)=f(1)=0.
即在区间(0,6)内,
f(2)=0,f(5)=0,f(1)=0,f(4)=0,
故答案:B
∴f(5)=f(2)=0,f(1)=f(-2)=0,f(4)=f(1)=0.
即在区间(0,6)内,
f(2)=0,f(5)=0,f(1)=0,f(4)=0,
故答案:B
点评:本题考查函数的奇偶性、根的存在性及个数判断.
练习册系列答案
相关题目
设f(x)是定义在R上的函数,且对任意实数x,恒有f(x+2)=-3f(x).当x∈[0,2]时,f(x)=2x-x2.则f(0)+f(-1)+f(-1)+…+f(-2014)=( )
A、-
| ||||
B、-
| ||||
C、-
| ||||
D、-
|