题目内容
若an=1 |
n+1 |
1 |
n+2 |
1 |
2n |
分析:由题意知,an+1-an=(
+
+…+
+
+
)-(
+
+…+
),由此能够推陈出新出此结果.
1 |
n+2 |
1 |
n+3 |
1 |
2n |
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
解答:解:an+1-an=(
+
+…+
+
+
)-(
+
+…+
)
=
+
-
=
-
.
故答案为:
-
.
1 |
n+2 |
1 |
n+3 |
1 |
2n |
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
=
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
=
1 |
2n+1 |
1 |
2n+2 |
故答案为:
1 |
2n+1 |
1 |
2n+2 |
点评:本题考查数列的运算,解题的关键是an+1=(
+
+…+
+
+
),别丢掉
这一项.
1 |
n+2 |
1 |
n+3 |
1 |
2n |
1 |
2n+1 |
1 |
2n+2 |
1 |
2n+1 |
练习册系列答案
相关题目
若an=
+
+…+
(n是正整数),则an+1=an+( )
1 |
n+1 |
1 |
n+2 |
1 |
2n |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|