题目内容

已知平面上三个向量
a
b
c
的模均为1,它们相互之间的夹角均为120°.
(1)求证:(
a
-
b
)⊥
c

(2)若|k
a
+
b
+
c
|>1 (k∈R),求k的取值范围.
分析:(1)利用向量的分配律及向量的数量积公式求出(
a
-
b
)•
c
;利用向量的数量积为0向量垂直得证.
(2)利用向量模的平方等于向量的平方及向量的数量积公式将已知等式平方得到关于k的不等式求出k的范围.
解答:解:(1)证明∵(
a
-
b
)•
c
=
a
c
-
b
c
=|
a
|•|
c
|•cos120°-|
b
|•|
c
|•cos120°=0,
(
a
-
b
)⊥
c

(2)解|k
a
+
b
+
c
|>1?(k
a
+
b
+
c
)
2
>1,
k2 
a
2
 +
b
2
+
c
2
+2k
a
b
+2k
a
c
+2
b
c
>1.
∵|
a
|=|
b
|=|
c
|=1,且
a
b
c
相互之间的夹角均为120°,
a
2
=
b
2
=
c
2
=1,
a
b
=
b
c
=
a
c
=-
1
2

∴k2+1-2k>1,即k2-2k>0,
∴k>2或k<0.
点评:本题考查向量垂直的充要条件、向量模的平方等于向量的平方、向量的数量积公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网