题目内容

已知点P在曲线C:y=
1
x
 (x>1)
上,曲线C在点P处的切线与函数y=kx(k>0)的图象交于点A,与x轴交于点B,设点P的横坐标为t,点A、B的横坐标分别为xA、xB,记f(t)=xA•xB
(1)求f(t)的解析式;
(2)设数列{an}满足a1=1,an=f(
an-1
) (n≥2 且 x∈N*)
,求数列{an}的通项公式;
(3)在 (2)的条件下,当1<k<3时,证明不等式a1+a2+…+an
3n-8k
k
分析:(1)由y=
1
x
,求出切线方程为y-
1
t
=-
1
t2
(x-t)
,与y=kx联立得:xA=
2t
kt2+1
,xB=2t,再由f(t)=xA•xB,能求出f(t)的解析式.
(2)由an=f(
an-1
)
得:an=
4an-1
kan-1+1
1
an
=
kan-1+1
4an-1
=
1
4
1
an-1
+
k
4
,设bn=
1
an
-
k
3
,则bn=
1
an
-
k
3
=
1
4
(
1
an-1
-
k
3
)=
1
4
bn-1
,由此导出bn=(1-
k
3
)(
1
4
)n-1
,解得an=
3•4n-1
k•4n-1+3-k

(3)因为an-
3
k
=
3•4n-1
k•4n-1+3-k
-
3
k
=
3k-9
k24n-1+k(3-k)
,由1<k<3,知an-
3
k
3k-9
k2
1
4n-1
,所以a1+a2+…+an-
3n-8k
k
=(a1-
3
k
)+(a2-
3
k
)+…+(an-
3
k
)=
3k-9
k2
(1+
1
4
+…+
1
4n-1
)+8
4(k-3)
k2
+8

=
4(2k+3)(k-1)
k2
>0,由此能够证明a1+a2+…+an
3n-8k
k
解答:解:(1)∵y=
1
x

y=-
1
x2

∴切线方程为y-
1
t
=-
1
t2
(x-t)

与y=kx联立得:xA=
2t
kt2+1
,令y=0,得:xB=2t,
∵f(t)=xA•xB
f(t)=
4t2
kt2+1
(k>0,t>1).
(2)由an=f(
an-1
)
得:an=
4an-1
kan-1+1

1
an
=
kan-1+1
4an-1
=
1
4
1
an-1
+
k
4

bn=
1
an
-
k
3

bn=
1
an
-
k
3
=
1
4
(
1
an-1
-
k
3
)=
1
4
bn-1

∵a1=1,
∴①当k=3时,b1=
1
a1
-1=0

∴{bn}是以0为首项的常数数列,
∴an=1.
②当k≠3时,{bn}是以1-
k
3
为首项,
1
4
为公比的等比数列,
bn=(1-
k
3
)(
1
4
)n-1

解得an=
3•4n-1
k•4n-1+3-k

由①②,得an=
3•4n-1
k•4n-1+3-k

(3)∵an-
3
k
=
3•4n-1
k•4n-1+3-k
-
3
k

=
3k-9
k(k•4n-1+3-k)

=
3k-9
k24n-1+k(3-k)

∵1<k<3,
an-
3
k
3k-9
k2
1
4n-1

a1+a2+…+an-
3n-8k
k

=(a1-
3
k
)+(a2-
3
k
)+…+(an-
3
k

=
3k-9
k2
(1+
1
4
+…+
1
4n-1
)+8

=
4(k-3)
k2
[1-(
1
4
)
n
]+8

4(k-3)
k2
+8

=
4(2k+3)(k-1)
k2

∵1<k<3,
4(2k+3)(k-1)
k2
>0.
a1+a2+…+an
3n-8k
k
点评:本题考查数列与不等式的综合,综合性强,难度大,容易出错.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网