题目内容
已知点P在曲线C:y=1 |
x |
(Ⅰ)求f(t)的解析式;
(Ⅱ)设数列{an}(n≥1,n∈N)满足a1=1,an=f(
an-1 |
1 |
an |
k |
3 |
(Ⅲ)在(Ⅱ)的条件下,当1<k<3时,证明不等式:a1+a2+…+an>
3n-8k |
k |
分析:(Ⅰ)先求出曲线C在点P处的切线为l的方程,求出点B的坐标,联立切线方程与方程y=kx求出点A的坐标,代入f(t)=xA•xB.就可求得f(t)的解析式;
(Ⅱ)利用(Ⅰ)的结论求出数列{an}的递推关系,再利用bn=
-
求出数列{bn}的递推关系,根据k的取值分别求出an与bn即可.
(Ⅲ)利用(Ⅱ)的结论求出数列{an-
}的表达式,再对其用放缩法求和,即可证明不等式:a1+a2+…+an>
.
(Ⅱ)利用(Ⅰ)的结论求出数列{an}的递推关系,再利用bn=
1 |
an |
k |
3 |
(Ⅲ)利用(Ⅱ)的结论求出数列{an-
k |
3 |
3n-8k |
k |
解答:解:(Ⅰ)∵y=
,∴y′=-
,又点P的坐标为(t,
),
曲线C在点P处的切线的斜率为-
,则切线l的方程为y-
=(x-t)(-
),
令y=0,得xB=2t;由
得xA=
,
∴xA•xB=
故f(t)=
(t>1)(3分)
(Ⅱ)由已知,n≥2时,an=
,得
=
•
+
,
∴bn=
-
=
•
+
-
=
(
-
)=
bn-1;
①当k=3时,b1=0,数列{bn}是以0为首项的常数列,则bn=0,从而an=1;(5分)
②当k≠3时,b1=1-
≠0,数列{bn}为等比数列,bn=(1-
)(
)n-1,
从而an=
综上,an=
,bn=(1-
)(
)n-1(8分)
(Ⅲ)an-
=
∵1<k<3,∴
<0,又0<
<
∴an-
>
•
,即an-
>
•
,(10分)
∴(a1-
)+(a2-
)++(an-
)>
(
+
++
)=
•
=
[1-(
)n]>
,
∴a1+a2++an>
+
,(12分)
又∵
-
=
>0,
∴
>
,∴a1+a2++an>
+
=
,即所证不等式成立.(14分)
1 |
x |
1 |
x2 |
1 |
t |
曲线C在点P处的切线的斜率为-
1 |
t2 |
1 |
t |
1 |
t2 |
令y=0,得xB=2t;由
|
2t |
kt2+1 |
∴xA•xB=
4t2 |
kt2+1 |
4t2 |
kt2+1 |
(Ⅱ)由已知,n≥2时,an=
4an-1 |
kan-1+1 |
1 |
an |
1 |
4 |
1 |
an-1 |
k |
4 |
∴bn=
1 |
an |
k |
3 |
1 |
4 |
1 |
an-1 |
k |
4 |
k |
3 |
1 |
4 |
1 |
an-1 |
k |
3 |
1 |
4 |
①当k=3时,b1=0,数列{bn}是以0为首项的常数列,则bn=0,从而an=1;(5分)
②当k≠3时,b1=1-
k |
3 |
k |
3 |
1 |
4 |
从而an=
3•4n-1 |
k•4n-1+3-k |
综上,an=
3•4n-1 |
k•4n-1+3-k |
k |
3 |
1 |
4 |
(Ⅲ)an-
3 |
k |
3k-9 |
k(k•4n-1+3-k) |
∵1<k<3,∴
3k-9 |
k |
1 |
k•4n-1+3-k |
1 |
k•4n-1 |
∴an-
3 |
k |
3k-9 |
k |
1 |
k•4n-1 |
3 |
k |
3k-9 |
k2 |
1 |
4n-1 |
∴(a1-
3 |
k |
3 |
k |
3 |
k |
3k-9 |
k2 |
1 |
40 |
1 |
41 |
1 |
4n-1 |
3k-9 |
k2 |
1-(
| ||
1-
|
=
4(k-3) |
k2 |
1 |
4 |
4(k-3) |
k2 |
∴a1+a2++an>
3n |
k |
4(k-3) |
k2 |
又∵
4(k-3) |
k2 |
-8k |
k |
4(2k+3)(k-1) |
k2 |
∴
4(k-3) |
k2 |
-8k |
k |
3n |
k |
-8k |
k |
3n-8k |
k |
点评:本题涉及到用放缩法来证明不等式.当函数与数列,不等式合在一起出题时,多会涉及到用放缩法来证明不等式.在放缩时,放缩的度要把握好.
练习册系列答案
相关题目