题目内容

13、已知定义在R上的奇函数f(x)的图象关于直线x=1对称,f(-1)=1,则f(1)+f(2)+f(3)+…+f(2009)的值为
-1
分析:先由图象关于直线x=1对称得f(2-x)=f(x),再与奇函数条件结合起来,有f(x+4)=f(x),得f(x)是以4为周期的周期函数再求解.
解答:解;∵图象关于直线x=1对称
∴f(2-x)=f(x)
∵f(x)是奇函数
∴f(-x)=-f(x)
f(2+x)=-f(x)
∴f(x+4)=f(x)
∴f(x)是以4为周期的周期函数.
∵f(1)=-1,f(2)=-f(0)=0,f(3)=f(2+1)=-f(1)=1,f(4)=f(4+0)=f(0)=0
∴f(1)+f(2)+f(3)+f(4)=0
∴f(1)+f(2)+f(3)+…+f(2009)=f(2009)=f(502×4+1)=f(1)=-1
故答案为:-1
点评:本题主要考查函数的奇偶性和对称性以及性质间的结合与转化,如本题周期性就是由奇偶性和对称性结合转化而来的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网