题目内容
已知平面直角坐标系下的一列点Pn(an,bn)满足an+1=anbn+1,bn+1=bn | ||
1-
|
1 |
4 |
3 |
4 |
(Ⅰ) 求点P2坐标,并写出过点P1,P2的直线L的方程;
(Ⅱ) 猜想点Pn(n≥2)与直线L的位置关系,并加以证明;
(Ⅲ) 若c1=1,cn+1=bncn,Sn=c1a2+c2a3+…+cnan+1,求
lim |
n→∞ |
分析:(Ⅰ)由P1(
,
),知a1=
,b1=
,b2=
=
,a2=a1b2=
×
=
,由此能求出过点P1,P2直线L的方程.
(Ⅱ)由P2坐标为(
,
)得a3=
,b3=
,所以点P3∈L,猜想点Pn(n≥3,n∈N)在直线L上,再用数学归纳法证明.
(Ⅲ)由an+1=anbn+1,bn+1=
,ak+bk=1,知an≠0,an≠±1,所以
=
+1,{
}是等差数列,由此入手能够导出
Sn的值.
1 |
4 |
3 |
4 |
1 |
4 |
3 |
4 |
| ||
1-(
|
4 |
5 |
1 |
4 |
4 |
5 |
1 |
5 |
(Ⅱ)由P2坐标为(
1 |
5 |
4 |
5 |
1 |
6 |
5 |
6 |
(Ⅲ)由an+1=anbn+1,bn+1=
bn | ||
1-
|
1 |
an+1 |
1 |
an |
1 |
an |
lim |
n→∞ |
解答:解:(Ⅰ)∵P1(
,
),
∴a1=
,b1=
,
∴b2=
=
,a2=a1b2=
×
=
,
∴P2坐标为(
,
),(2分)
∴过点P1,P2直线L的方程为x+y=1,(4分)
(Ⅱ)由P2坐标为(
,
)得a3=
,b3=
,
∴点P3∈L,
猜想点Pn(n≥3,n∈N)在直线L上,以下用数学归纳法证明:
当n=3时,点P3∈L,(5分)
假设当n=k(k≥2)时,命题成立,即点Pk∈L,
∴ak+bk=1,(6分)
则当n=k+1时,ak+1+bk+1=akbk+1+bk+1
=(1+ak)•
=
=1,(7分)
∴点Pn∈L(n≥3),(8分)
(Ⅲ)由an+1=anbn+1,bn+1=
,ak+bk=1,
∴an≠0,an≠±1,
∴an+1=an
=an
=
,
∴
=
+1,
∴{
}是等差数列,
∴
=
+n-1=n+3,(9分)
∴an=
,bn=
,
∵cn+1=bncn,
∴cn=
×
×…×
×c1,
=
×
×
×
×1=
,(10分)
∴cnan+1=
=
(
-
)(11分)
∴Sn=c1a2+c2a3+…+cnan+1
=
[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]+(
-
)]
=
[(
+
-
-
)],
∴
Sn=
[(
-
-
)]
=
[(
-
-
)]=
.(12分)
1 |
4 |
3 |
4 |
∴a1=
1 |
4 |
3 |
4 |
∴b2=
| ||
1-(
|
4 |
5 |
1 |
4 |
4 |
5 |
1 |
5 |
∴P2坐标为(
1 |
5 |
4 |
5 |
∴过点P1,P2直线L的方程为x+y=1,(4分)
(Ⅱ)由P2坐标为(
1 |
5 |
4 |
5 |
1 |
6 |
5 |
6 |
∴点P3∈L,
猜想点Pn(n≥3,n∈N)在直线L上,以下用数学归纳法证明:
当n=3时,点P3∈L,(5分)
假设当n=k(k≥2)时,命题成立,即点Pk∈L,
∴ak+bk=1,(6分)
则当n=k+1时,ak+1+bk+1=akbk+1+bk+1
=(1+ak)•
bk | ||
1-
|
bk |
1-ak |
∴点Pn∈L(n≥3),(8分)
(Ⅲ)由an+1=anbn+1,bn+1=
bn | ||
1-
|
∴an≠0,an≠±1,
∴an+1=an
bn | ||
1-
|
1-an | ||
1-
|
an |
1+an |
∴
1 |
an+1 |
1 |
an |
∴{
1 |
an |
∴
1 |
an |
1 |
a1 |
∴an=
1 |
n+3 |
n+2 |
n+3 |
∵cn+1=bncn,
∴cn=
c2 |
c1 |
c3 |
c2 |
cn |
cn-1 |
=
3 |
4 |
4 |
5 |
5 |
6 |
n+1 |
n+2 |
3 |
n+2 |
∴cnan+1=
3 |
(n+2)(n+4) |
3 |
2 |
1 |
n+2 |
1 |
n+4 |
∴Sn=c1a2+c2a3+…+cnan+1
=
3 |
2 |
1 |
3 |
1 |
5 |
1 |
4 |
1 |
6 |
1 |
5 |
1 |
7 |
1 |
n+1 |
1 |
n+3 |
1 |
n+2 |
1 |
n+4 |
1 |
n+2 |
1 |
n+4 |
=
3 |
2 |
1 |
3 |
1 |
4 |
1 |
n+3 |
1 |
n+4 |
∴
lim |
n→∞ |
lim |
n→∞ |
3 |
2 |
7 |
12 |
1 |
n+3 |
1 |
n+4 |
=
3 |
2 |
7 |
12 |
lim |
n→∞ |
1 |
n+3 |
lim |
n→∞ |
1 |
n+4 |
7 |
8 |
点评:本题考查数列和解析几何的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目