题目内容
已知抛物线C的一个焦点为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_ST/1.png)
(1)写出抛物线C的方程;
(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程.
【答案】分析:(1)根据抛物线C的一个焦点为
,其准线方程为
,可得抛物线C的方程为y2=2x;
(2)①当直线l不垂直于x轴时,设方程为y=k(x-
),代入y2=2x,得k2x2-x(k2+2)+
=0.设点A、B的坐标分别为(x1,y1)、(x2,y2),根据韦达定理,及三角形的重心坐标公式,即可求出△AOB重心G的轨迹方程;②当l垂直于x轴时,A、B的坐标分别为(
,1)和(
,-1),△AOB的重心G(
,0),也适合y2=
x-
,故可得轨迹C的方程.
解答:解:(1)∵抛物线C的一个焦点为
,其准线方程为![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/10.png)
∴抛物线C的方程为y2=2x;
(2)抛物线的焦点坐标为(
,0),
①当直线l不垂直于x轴时,设方程为y=k(x-
),代入y2=2x,
得k2x2-x(k2+2)+
=0.
设l方程与抛物线相交于两点,∴k≠0.设点A、B的坐标分别为(x1,y1)、(x2,y2),
根据韦达定理,有x1+x2=
,从而y1+y2=k(x1+x2-1)=
.
设△AOB的重心为G(x,y),则x=
=
,y=
=
,
∴y2=
x-
.
②当l垂直于x轴时,A、B的坐标分别为(
,1)和(
,-1),△AOB的重心G(
,0),也适合y2=
x-
,
因此所求轨迹C的方程为y2=
x-
.
点评:本题重点考查抛物线的方程,考查抛物线的性质,考查韦达定理的运用,解题的关键是直线与抛物线联立,利用韦达定理解决.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/1.png)
(2)①当直线l不垂直于x轴时,设方程为y=k(x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/8.png)
解答:解:(1)∵抛物线C的一个焦点为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/10.png)
∴抛物线C的方程为y2=2x;
(2)抛物线的焦点坐标为(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/11.png)
①当直线l不垂直于x轴时,设方程为y=k(x-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/12.png)
得k2x2-x(k2+2)+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/13.png)
设l方程与抛物线相交于两点,∴k≠0.设点A、B的坐标分别为(x1,y1)、(x2,y2),
根据韦达定理,有x1+x2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/15.png)
设△AOB的重心为G(x,y),则x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/19.png)
∴y2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/21.png)
②当l垂直于x轴时,A、B的坐标分别为(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/23.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/26.png)
因此所求轨迹C的方程为y2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101231153644801783/SYS201311012311536448017017_DA/28.png)
点评:本题重点考查抛物线的方程,考查抛物线的性质,考查韦达定理的运用,解题的关键是直线与抛物线联立,利用韦达定理解决.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目