题目内容

已知复数z1=2sinθ-
3
i,   z2=1+(2cosθ)i,   θ∈[0,π]

(1)若z1•z2∈R,求角θ;
(2)复数z1,z2对应的向量分别是
a
b
,存在θ使等式(λ
a
+
b
)•(
a
b
)=0成立,求实数λ的取值范围.
(1)∵z1•z2=(2sinθ-
3
i)(1+2icosθ)
=(2sinθ+2
3
cosθ)+
(2sin2θ-
3
)i
是实数,
2sin2θ-
3
=0
,∴sin2θ=
3
2

∵0≤θ≤π,∴0≤2θ≤2π,∴2θ=
π
3
3
,解得θ=
π
6
π
3

(2)∵
a
2
+
b
2
=(2sinθ)2+(-
3
)2
+1+(2cosθ)2=8,
a
b
=(2sinθ,-
3
)•(1,2cosθ)
=2sinθ-2
3
cosθ

a
+
b
)•(
a
b
)
=λ(
a
2
+
b
2
)
+(1+λ2)
a
b

=8λ+(1+λ2)(2sinθ-2
3
cosθ)
=0,
化为sin(θ-
π
3
)=-
1+λ2

∵θ∈[0,π],∴(θ-
π
3
)∈
[-
π
3
3
]
,∴sin(θ-
π
3
)∈
[-
3
2
,1]

-
3
2
≤-
1+λ2
≤1
,解得λ≥
3
λ≤
3
3

实数λ的取值范围是(-∞,
3
3
)∪(
3
,+∞)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网