题目内容

等比数列{an}同时满足下列三个条件:①a1+a6=33;②a2a5=32;③三个数2a2,a32,3a4+4依次成等差数列,求数列{an}的通项公式及前n项和Sn
由等比数列性质,a1•a6 =a2a5=32,又a1+a6=33.∴a1,a6是方程x2-33x+32=0的两根,解得①
a1=1
a6=32
,此时q=2,通项公式为an=2n-1,三个数2a2,a32,3a4+4依次为:4,16,28,成等差数列,符合题意.
或②
a1=32
a6=1
,此时q=
1
2
,通项公式为an=32×(
1
2
)
n-1
=26-n,三个数2a2,a32,3a4+4依次32,64,16,不成等差数列.
∴数列{an}的通项公式an=2n-1
∴Sn=
1-2n
1-2
=2n-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网