题目内容
下列命题:
①∀x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则>”的逆否命题是真命题;
④若命题p:∀x∈R,x2+1≥1,命题q:∃x0∈R,x-x0-1≤0,则命题p∧(綈q)是真命题.其中真命题为( )
A.①②③ B.①②④
C.①③④ D.②③④
解析:由x2+2x>4x-3推得x2-2x+3=(x-1)2+2>0恒成立,故①正确;根据基本不等式可知要使不等式log2x+logx2≥2成立需要x>1,故②正确;由a>b>0得0<<,又c<0,可得>,则可知其逆否命题为真命题,故③正确;命题p是真命题,命题q是真命题,所以p∧(綈q)为假命题.所以选A.
答案:A
练习册系列答案
相关题目