题目内容
【题目】已知函数f1(x)=﹣ax2,f2(x)=x3+x2,f(x)=f1(x)+f2(x),设f(x)的导函数为f′(x),若不等式f1(x)<f′(x)<f2(x)在区间(1,+∞)上恒成立,则a的取值范围为_____.
【答案】
【解析】
在区间上恒成立,即恒成立,可化为,由一次函数的性质可求的范围;可化为,由二次函数的性质求出函数的最值,可得的范围,综合两种情况可得结果.
f(x)=﹣ax2+x3+x2=x3+(1﹣a)x2,f′(x)=3x2+2(1﹣a)x,
f1(x)<f′(x)<f2(x)在区间(1,+∞)上恒成立,
即﹣ax2<3x2+2(1﹣a)x<x3+x2恒成立,
﹣ax2<3x2+2(1﹣a)x,可化为(a+3)x+2(1﹣a)>0,
,解得﹣3≤a≤5①;
3x2+2(1﹣a)x<x3+x2可化为2a>﹣x2+2x+2,
而﹣x2+2x+2=﹣(x﹣1)2+3<3,
∴2a≥3,即②,
由①②可得,
∴实数a的取值范围是,故答案为.
【题目】已知从甲地到乙地的公路里程约为240(单位:km).某汽车每小时耗油量Q(单位:L)与速度x(单位:)()的关系近似符合以下两种函数模型中的一种(假定速度大小恒定):①,②,经多次检验得到以下一组数据:
x | 0 | 40 | 60 | 120 |
Q | 0 | 20 |
(1)你认为哪一个是符合实际的函数模型,请说明理由;
(2)从甲地到乙地,这辆车应以多少速度行驶才能使总耗油量最少?
【题目】某书店刚刚上市了《中国古代数学史》,销售前该书店拟定了5种单价进行试销,每本单价(元)试销l天,得到如表单价(元)与销量(册)数据:
单价(元) | |||||
销量(册) |
(1)已知销量与单价具有线性相关关系,求关于的线性回归方程;
(2)若该书每本的成本为元,要使得售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.
【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.