题目内容
【题目】有一批材料可以建成200m的围墙,若用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形,如何设计这块矩形场地的长和宽,能使面积最大,并求出最大面积.
【答案】当时,S取得最大值.此时,长为100m,宽为25m.
【解析】
设每个小矩形长为x,宽为y,则依题意可知4x+3y=200,代入矩形的面积公式,根据二次函数的单调性求得围城矩形面积的最大值.
设每个小矩形长为x,宽为y,则4x+3y=200,
S=3xy=x(200-4x)=-4x2+200x=-4(x-25)2+2500
∴x=25时,Smax=2500(m2),此时,长为100m,宽为25m.
所以长为100m,宽为25m,围成的矩形的最大面积是2500(m2)
练习册系列答案
相关题目
【题目】某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:
上市时间x天 | 2 | 6 | 20 |
市场价y元 | 102 | 78 | 120 |
(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;
(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.
【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(个月)和市场占有率()的几组相关对应数据:
1 | 2 | 3 | 4 | 5 | |
0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;
(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过(精确到月).