题目内容

16.己知函数f(x)=|lg(x+1)|.
(1)若a,b∈R且α<b,满足f($\frac{a}{2}$)=f(-$\frac{b+2}{b+4}$),f(5a+3b+21)=4lg2,求a,b;
(2)函数g(x)满足1-$\frac{1}{m}$g(x)=f(102x-1-1),m为常数且m>0,若x0满足g(g(x0))=x0,但g(x0)≠x0,则称x0为函数g(x)的二阶不动点,如果g(x)有二阶不动点x1,x2,试确定m的取值范围.

分析 (1)根据函数f(x)=|lg(x+1)|,α<b,f($\frac{a}{2}$)=f(-$\frac{b+2}{b+4}$),f(5a+3b+21)=4lg2,构造关于a,b的方程组,解得答案.
(2)根据已知中二阶不动点的定义,先求出g(x)的解析式,再分类讨论不同情况下,g(x)是否有二阶不动点x1,x2,最后综合讨论结果,可得答案.

解答 解:(1)∵函数f(x)=|lg(x+1)|,f($\frac{a}{2}$)=f(-$\frac{b+2}{b+4}$),f(5a+3b+21)=4lg2=lg16,
∴$\frac{a}{2}$=-$\frac{b+2}{b+4}$,或($\frac{a}{2}$+1)(-$\frac{b+2}{b+4}$+1)=1,5a+3b+22=16或16(5a+3b+22)=1,
又∵α<b,
∴①当$\frac{a}{2}$=-$\frac{b+2}{b+4}$,5a+3b+22=16时,解得:$\left\{\begin{array}{l}a=0\\ b=-2\end{array}\right.$(舍去),或$\left\{\begin{array}{l}a=-\frac{4}{5}\\ b=-\frac{2}{3}\end{array}\right.$
②当($\frac{a}{2}$+1)(-$\frac{b+2}{b+4}$+1)=1,5a+3b+22=16时,解得:$\left\{\begin{array}{l}a=0\\ b=-2\end{array}\right.$(舍去);
③当$\frac{a}{2}$=-$\frac{b+2}{b+4}$,16(5a+3b+22)=1不存在满足条件的a,b的值;
④当($\frac{a}{2}$+1)(-$\frac{b+2}{b+4}$+1)=1,16(5a+3b+22)=1时,不存在满足条件的a,b的值;
综上所述:$\left\{\begin{array}{l}a=-\frac{4}{5}\\ b=-\frac{2}{3}\end{array}\right.$,
(2)∵1-$\frac{1}{m}$g(x)=f(102x-1-1)=|lg(102x-1-1+1)|=|lg(102x-1)|=|2x-1|.
∴$\frac{1}{m}$g(x)=1-|2x-1|,
∴g(x)=m(1-|2x-1|),
当0<m<$\frac{1}{2}$时,有g(g(x))=$\left\{\begin{array}{l}4{m}^{2}x,x≤\frac{1}{2}\\ 4{m}^{2}(1-x),x>\frac{1}{2}\end{array}\right.$.
∴g(g(x))=x只有一个解x=0,
又∵g(0)=0,故0不是二阶不动点.
当m=$\frac{1}{2}$时,有g(g(x))=$\left\{\begin{array}{l}x,x≤\frac{1}{2}\\ 1-x,x>\frac{1}{2}\end{array}\right.$.
∴g(g(x))=x有解集,{x|x≤$\frac{1}{2}$},故此集合中的所有点都不是二阶不动点.
当m>$\frac{1}{2}$时,有g(g(x))=$\left\{\begin{array}{l}4{m}^{2}x,x≤\frac{1}{4m}\\ 2m-4{m}^{2}x,\frac{1}{4m}<x≤\frac{1}{2}\\ 2m(1-2m)+4{m}^{2}x,\frac{1}{2}<x≤\frac{4m-1}{4m}\\ 4{m}^{2}-4{m}^{2}x,x>\frac{4m-1}{4m}\end{array}\right.$,
∴g(g(x))=x有四个解:0,$\frac{2m}{1+4{m}^{2}}$,$\frac{2m}{1+2m}$,$\frac{4{m}^{2}}{1+4{m}^{2}}$.
由g(0)=0,g($\frac{2m}{1+2m}$)=$\frac{2m}{1+2m}$,g($\frac{2m}{1+4{m}^{2}}$)≠$\frac{2m}{1+4{m}^{2}}$,g($\frac{4{m}^{2}}{1+4{m}^{2}}$)≠$\frac{4{m}^{2}}{1+4{m}^{2}}$.
故只有$\frac{2m}{1+4{m}^{2}}$,$\frac{4{m}^{2}}{1+4{m}^{2}}$是g(x)的二阶不动点,
综上所述,所求m的取值范围为m>$\frac{1}{2}$.

点评 本题考查的知识点是对数的运算性质,对数函数的图象和性质,绝对值函数,新定义二阶不动点,本题综合性强,运算量大,转化困难,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网