题目内容
【题目】已知函数f(x)=2lnx﹣ax+a(a∈R).
(1)讨论f(x)的单调性;
(2)若f(x)≤0恒成立,证明:当0<x1<x2时, .
【答案】
(1)解:求导得f′(x)= ,x>0.
若a≤0,f′(x)>0,f(x)在(0,+∞)上递增;
若a>0,当x∈(0, )时,f′(x)>0,f(x)单调递增;
当x∈( ,+∞)时,f′(x)<0,f(x)单调递减.
(2)解:由(1)知,若a≤0,f(x)在(0,+∞)上递增,
又f(1)=0,故f(x)≤0不恒成立.
若a>2,当x∈( ,1)时,f(x)递减,f(x)>f(1)=0,不合题意.
若0<a<2,当x∈(1, )时,f(x)递增,f(x)>f(1)=0,不合题意.
若a=2,f(x)在(0,1)上递增,在(1,+∞)上递减,
f(x)≤f(1)=0,合题意.
故a=2,且lnx≤x﹣1(当且仅当x=1时取“=”).
当0<x1<x2时,f(x2)﹣f(x1)=2ln ﹣2(x2﹣x1)
<2( ﹣1)﹣2(x2﹣x1)
=2( ﹣1)(x2﹣x1),
∴ <2( ﹣1)
【解析】(1)利用导数的运算法则可得f′(x),对a分类讨论即可得出其单调性;(2)通过对a分类讨论,得到当a=2,满足条件且lnx≤x﹣1(当且仅当x=1时取“=”).利用此结论即可证明.
【考点精析】认真审题,首先需要了解函数单调性的性质(函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集),还要掌握利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减)的相关知识才是答题的关键.
【题目】第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 | |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和(从第26届算起,不包括之前已获得的金牌数)随时间变化的数据:
时间(届) | 26 | 27 | 28 | 29 | 30 |
金牌数之和(枚) | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:
由图可以看出,金牌数之和与时间之间存在线性相关关系,请求出关于的线性回归方程,并预测从第26届到第32届奥运会时中国代表团获得的金牌数之和为多少?
附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为:,