题目内容

精英家教网如图,在三棱柱ADF-BCE中,侧棱AB⊥底面ADF,底面ADF是等腰直角三角形,且AD=DF=a,AB=2a,M、G分别是AB、DF的中点.
(1)求证GA∥平面FMC;
(2)求直线DM与平面ABEF所成角.
分析:(1)欲证GA∥平面FMC,可先证明面GSA∥面FMC,取DC中点S,连接AS、GS、GA,根据中位线定理可知GS∥FC,AS∥CM,满足面面平行的判定定理,而GA?面GSA,满足面面平行的性质,从而得到结论;
(2)在平面ADF上,过D作AF的垂线,垂足为H,连DM,则DH⊥平面ABEF,根据线面所成角的定义可知∠DMH是DM与平面ABEF所成的角.在RT△DHM中,求出此角即可.
解答:精英家教网解:(1)证明:取DC中点S,连接AS、GS、GA,
∵G是DF的中点,GS∥FC,AS∥CM
∴面GSA∥面FMC,而GA?面GSA,
∴GA∥平面FMC
(2)在平面ADF上,过D作AF的垂线,垂足为H,连DM,则DH⊥平面ABEF,
∠DMH是DM与平面ABEF所成的角.
在RT△DHM中,DH=
2
2
a
,DM=
2
a

∴sin∠DMH=
DH
DM
=
1
2

∠DMH=
π
6

所以DM与平面ABEF所成的角为
π
6
点评:本题主要考查了直线与平面的所成角,以及直线与平面平行的判定,同时考查了空间想象能力、计算与推理能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网