题目内容

已知函数f(t)=at2-
b
t+
1
4a
(t∈R,a<0)的最大值为正实数,集合A={x|
x-a
x
<0},集合B={x|x2<b2}.
(1)求A和B;
(2)定义A与B的差集:A-B={x|x∈A且x∉B}.设a,b,x均为整数,且x∈A.P(E)为x取自A-B的概率,P(F)为x取自A∩B的概率,写出a与b的二组值,使P(E)=
2
3
,P(F)=
1
3

(3)若函数f(t)中,a,b是(2)中a较大的一组,试写出f(t)在区间[n-
2
8
,n]上的最大值函数g(n)的表达式.
分析:(1)先函数f(t)进行配方,根据函数f(t)的最大值为正实数可确定b的范围,然后分别求出集合A和集合B即可;
(2)要使P(E)=
2
3
,P(F)=
1
3
.分为二种情形,第一种A中有3个元素,A-B中有2个元素,A∩B中有1个元素,求出a,b即可,第二种,A中有6个元素,A-B中有4个元素,A∩B中有2个元素,可求出a,b的值.
(3)根据(2)先求出函数f(t)的解析式,讨论对称轴与区间[n-
2
8
,n]的位置关系,然后分别求出函数的最大值,最后用分段函数表示即可.
解答:解:(1)∵f(t)=at2-
b
t+
1
4a
(t∈R)

配方得f(t)=a(t-
b
2a
)2+
1-b
4b

由a<0得最大值
1-b
4a
>0
⇒b>1.(3分)
∴A={x|a<x<0},B={x|-b<x<b}.(6分)
(2)要使P(E)=
2
3
,P(F)=
1
3
.可以使①A中有3个元素,
A-B中有2个元素,A∩B中有1个元素.则a=-4,b=2.(9分)
②A中有6个元素,A-B中有4个元素,A∩B中有2个元素.则A=-7,B=3(12分)
(3)由(2)知f(t)=-4t2-
2
t-
1
16
(t∈[n-
2
8
,n])
(13分)

g(n)=
-4n2-
2
n-
1
16
,n<-
2
8
1
16
   -
2
8
≤n≤ 0
-4n2+
1
16
   n>0
(18分)
点评:本题主要考查了函数的最值及其几何意义,以及分段函数和古典概型及其概率计算公式,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网