搜索
题目内容
若θ是三角形的一个内角,且满足复数z=cosθ+isinθ是纯虚数,则θ=________.
试题答案
相关练习册答案
分析:利用复数的实部为0,虚部不为0,通过θ是三角形的一个内角,求出θ即可.
解答:因为复数z=cosθ+isinθ是纯虚数,所以cosθ=0,sinθ≠0,
又θ是三角形的一个内角,所以θ=
.
故答案为:
.
点评:本题考查复数的基本概念,复数的分类,考查计算能力.
练习册系列答案
口算题卡加应用题专项沈阳出版社系列答案
名师伴你成长课时同步学练测系列答案
优品全程特训卷系列答案
小学单元期末卷系列答案
手拉手单元加期末卷系列答案
高效课时练加测系列答案
高效课堂智能训练系列答案
一通百通精典考卷系列答案
全能金卷期末大冲刺系列答案
标准课堂练与考系列答案
相关题目
已知有关正三角形的一个结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC内切圆的圆心,则
AG
GD
=2”.若把该结论推广到正四面体(所有棱长均相等的三棱锥),则有结论:“在正四面体ABCD中,若M是正三角形BCD的中心,O是在正四面体ABCD内切球的球心,则
AO
OM
=
3
3
”.
球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球心到△ABC所在平面的距离等于球半径的
1
2
,那么这个球的表面积是
1200π
1200π
.
球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球心到△ABC所在平面的距离等于球半径的
1
2
,那么这个球的表面积是______.
已知有关正三角形的一个结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC内切圆的圆心,则
=2”.若把该结论推广到正四面体(所有棱长均相等的三棱锥),则有结论:“在正四面体ABCD中,若M是正三角形BCD的中心,O是在正四面体ABCD内切球的球心,则
=
”.
球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球心到△ABC所在平面的距离等于球半径的
,那么这个球的表面积是
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总