题目内容

7.已知数列{an}是等差数列,a1=1,a2+a6=20.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式为bn=loga(1+$\frac{1}{{a}_{n}}$)(a>1),记Sn是数列{bn}的前n项和,证明:3Sn>logaan+1

分析 (1)由已知条件利用等差数列的通项公式求出公差,由此能求出数列{an}的通项公式.
(2)由已知得bn=$lo{g}_{a}\frac{3n-1}{3n-2}$,(a>1),从而Sn=$lo{g}_{a}(\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3n-1}{3n-2})$,从而原式即证$\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3n-1}{3n-2}>\root{3}{3n+1}$,由此利用数学归纳法能证明3Sn>logaan+1

解答 解:(1)设等差数列的公差为d,
∵数列{an}是等差数列,a1=1,a2+a6=20,
∴1+d+1+5d=20,
解得d=3,
∴an=1+(n-1)×3=3n-2.
(2)∵bn=loga(1+$\frac{1}{{a}_{n}}$)=$lo{g}_{a}(1+\frac{1}{3n-2})$=$lo{g}_{a}\frac{3n-1}{3n-2}$,(a>1),
∴Sn=${log}_{a}\frac{2}{1}$+${log}_{a}\frac{5}{4}$+${log}_{a}\frac{8}{7}$+${log}_{a}\frac{11}{10}$+${log}_{a}\frac{14}{13}$+${log}_{a}\frac{17}{16}$+…+${log}_{a}\frac{3n-1}{3n-2}$,
要证3Sn>logaan+1,即证Sn=${log}_{a}\frac{2}{1}$+${log}_{a}\frac{5}{4}$+${log}_{a}\frac{8}{7}$+${log}_{a}\frac{11}{10}$+${log}_{a}\frac{14}{13}$+${log}_{a}\frac{17}{16}$+…+${log}_{a}\frac{3n-1}{3n-2}$=$lo{g}_{a}(\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3n-1}{3n-2})$>$\frac{1}{3}$logaan+1
即证$\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3n-1}{3n-2}>\root{3}{3n+1}$,
①当n=1时,$\frac{2}{1}>\root{3}{4}$,成立;
②假设n=k时成立,即$\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3k-1}{3k-2}$>$\root{3}{3k+1}$,
则当n=k+1时,即$\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3k-1}{3k-2}$+$\frac{3k+2}{3k+1}$>$\root{3}{3k+1}$+$\frac{3k+2}{3k+1}$>$\root{3}{3k+1}$+1>$\root{3}{3k+4}$=$\root{3}{3(k+1)+1}$,也成立.
∴$\frac{2}{1}×\frac{5}{4}×\frac{8}{7}×…×\frac{3n-1}{3n-2}>\root{3}{3n+1}$,
∴3Sn>logaan+1

点评 本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意对数性质和数学归纳法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网