题目内容

设函数f(x)=x(
1
2
x+
1
x+1
,O为坐标原点,An为函数y=f(x)图象上横坐标为n(n∈N*)的点,向量
OAn
与向量
i
=(1,0)的夹角为θn,则满足tanθ1+tanθ2+…+tanθn
5
3
的最大整数n的值为______.
由题意An(n,n(
1
2
)
n
+
1
n+1
)
OAn
=(n,n(
1
2
)
n
+
1
n+1
)

又向量
OAn
与向量
i
=(1,0)的夹角为θn
∴tanθn=(
1
2
)
n
+
1
n(n+1)
=(
1
2
)
n
+
1
n
-
1
n+1

tanθ1+tanθ2+…+tanθn
5
3

1
2
×[1-(
1
2
)
n
]
1-
1
2
+1-
1
n+1
5
3

∴2-(
1
2
)
n
-
1
n+1
5
3

(
1
2
)
n
+
1
n+1
1
3
,令n=1,2,3,4,分别代入验证知,n可取的最大值为3
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网