题目内容
设函数f(x)=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_ST/0.png)
(1)当a=10时,解关于x的方程f(x)=m(其中常数m>2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_ST/1.png)
(2)若函数f(x)在(-∞,2]上的最小值是一个与a无关的常数,求实数a的取值范围.
【答案】分析:(1)当a=10时,f(x)=
按照分段函数选择解析式,
①当x<0时,f(x)=
>3.因为m>2
.所以当2
<m≤3时,方程f(x)=m无解;当m>3,由10x=
求解.
②当x≥0时,10x≥1.由f(x)=m得10x+
=m,转化为(10x)2-m10x+2=0.求解.
(2)根据题意有g(x)=a|x|+2ax,x∈[-2,+∞),根据指数函数,分①当a>1时,②当0<a<1时,两种情况分析,每种情况下,根据绝对值,再按照x≥0时和-2≤x<0两种情况讨论.最后综合取并集.
解答:解:(1)f(x)=
(2分)
①当x<0时,f(x)=
>3.因为m>2
.
则当2
<m≤3时,方程f(x)=m无解;
当m>3,由10x=
,得x=lg
.(4分)
②当x≥0时,10x≥1.由f(x)=m得10x+
=m,
∴(10x)2-m10x+2=0.
因为m>2
,判别式△=m2-8>0,解得10x=
.
因为m>2
,所以
>
>1.
所以由10x=
,解得x=lg
.
令
=1,得m=3.
所以当m>3时,
=
<
=1,
当2
<m≤3时,
=
>
=1,解得x=lg
.
综上,当m>3时,方程f(x)=m有两解x=lg
和x=lg
;
当2
<m≤3时,方程f(x)=m有两解x=lg
.(8分)
(2)①若0<a<1,
当x<0时,0<f(x)=
<3;
当0≤x≤2时,f(x)=ax+
.
令t=ax,则t∈[a2,1],g(t)=t+
在[a2,1]上单调递减,
所以当t=1,即x=0时f(x)取得最小值为3.
当t=a2时,f(x)取得最大值为
.
此时f(x)在(-∞,2]上的值域是(0,
],没有最小值.(11分)
②若a>1,
当x<0时,f(x)=
>3;
当0≤x≤2时f(x)=ax+
.
令t=ax,g(t)=t+
,则t∈[1,a2].
①若a2≤
,g(t)=t+
在[1,a2]上单调递减,
所以当t=a2即x=2时f(x)取最小值a2+
,最小值与a有关;(13分)
②a2>
,g(t)=t+
在[1,
]上单调递减,在[
,a2]上单调递增,
所以当t=
即x=loga
时f(x)取最小值2
,最小值与a无关.(15分)
综上所述,当a≥
时,f(x)在(-∞,2]上的最小值与a无关.(16分)
点评:本题主要考查了函数与方程的综合运用,主要涉及了方程的根,函数的最值等问题,还考查了分类讨论思想,转化思想.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/0.png)
①当x<0时,f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/4.png)
②当x≥0时,10x≥1.由f(x)=m得10x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/5.png)
(2)根据题意有g(x)=a|x|+2ax,x∈[-2,+∞),根据指数函数,分①当a>1时,②当0<a<1时,两种情况分析,每种情况下,根据绝对值,再按照x≥0时和-2≤x<0两种情况讨论.最后综合取并集.
解答:解:(1)f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/6.png)
①当x<0时,f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/8.png)
则当2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/9.png)
当m>3,由10x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/11.png)
②当x≥0时,10x≥1.由f(x)=m得10x+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/12.png)
∴(10x)2-m10x+2=0.
因为m>2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/14.png)
因为m>2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/17.png)
所以由10x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/19.png)
令
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/20.png)
所以当m>3时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/21.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/23.png)
当2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/25.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/26.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/28.png)
综上,当m>3时,方程f(x)=m有两解x=lg
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/29.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/30.png)
当2
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/31.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/32.png)
(2)①若0<a<1,
当x<0时,0<f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/33.png)
当0≤x≤2时,f(x)=ax+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/34.png)
令t=ax,则t∈[a2,1],g(t)=t+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/35.png)
所以当t=1,即x=0时f(x)取得最小值为3.
当t=a2时,f(x)取得最大值为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/36.png)
此时f(x)在(-∞,2]上的值域是(0,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/37.png)
②若a>1,
当x<0时,f(x)=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/38.png)
当0≤x≤2时f(x)=ax+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/39.png)
令t=ax,g(t)=t+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/40.png)
①若a2≤
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/41.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/42.png)
所以当t=a2即x=2时f(x)取最小值a2+
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/43.png)
②a2>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/44.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/45.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/46.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/47.png)
所以当t=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/48.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/49.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/50.png)
综上所述,当a≥
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221446727089336/SYS201311012214467270893019_DA/51.png)
点评:本题主要考查了函数与方程的综合运用,主要涉及了方程的根,函数的最值等问题,还考查了分类讨论思想,转化思想.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目