题目内容

已知f(x)=x2+ax+b(a,b∈R的定义域为[-1,1].
(1)记|f(x)|的最大值为M,求证:M≥
1
2
.
(2)求出(1)中的M=
1
2
时,f(x)
的表达式.
分析:(1)利用|f(x)|的最大值为M,绝对值不等式|a-b|+|a+b|≥|2a|推出M≥
1
2

(2)利用(1)的条件和结论对-b,1+a+b,1-a+b讨论,求出求出a、b的值,确定f(x)的表达式.
解答:解:(1)f(x)=x2+ax+b
M≥|f(0)|=|b|
M≥|f(1)|=|1+a+b|
M≥|f(-1)|=|1-a+b|
4M≥2|b|+|1+a+b|+|1-a+b|≥|(-2b)+(1+a+b)+(1-a+b)|=2
M≥
1
2

[-b,1+a+b,1-a+b同号时取等号]
(2)I.若-b,1+a+b,1-a+b均≥0,M=
1
2
,则:
1+a+b≤
1
2
…①
1-a+b≤
1
2
…②
-b≤
1
2
…③
①+②:2+2b≤1,b≤-
1
2

③:b≥-
1
2

∴b=-
1
2

代回①:a≤0,②:a≥0
∴a=0
f(x)=x2-
1
2

II.若-b,1+a+b,1-a+b均<0,M=
1
2
,则:
0>1+a+b≥-
1
2
…①
0>1-a+b≥-
1
2
…②
0>-b≥-
1
2
…③
①+③:0>1+a≥-1,-2≤a<-1
②+③:0>1-a≥-1,1<a≤2
无解
综上:f(x)=x2-
1
2
点评:本题考查一元二次不等式的应用,绝对值不等式的证明,分类讨论思想,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网