题目内容
4.已知矩形ABCD的边AB=a,BC=3,PA⊥平面ABCD,若BC边上有且只有一点M,使PM⊥DM,则a的值为1.5.分析 连结AM,根据条件,要使PM⊥MD,则DM⊥面PAM,即DM⊥AM即可.然后利用圆的性质,只要保证以AB为直径的圆和BC相切即可.
解答 解:∵PA⊥平面ABCD,
∴PA⊥DM,
若BC边上存在点M,使PM⊥MD,
则DM⊥面PAM,
即DM⊥AM,
∴以AD为直径的圆和BC相交即可.
∵AD=BC=3,
∴圆的半径为3,
要使线段BC和半径为3的圆相切,
则AB=1.5,
即a=1.5,
∴a的值是1.5.
故答案为:1.5.
点评 本题主要考查线面垂直的性质的应用,将线面垂直转化为直线垂直进而利用圆的性质是解决本题的关键.
练习册系列答案
相关题目
19.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:
①若m?α,l∩α=A,点A∉m,则l与m不共面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l∥α,m∥β,α∥β,则l∥m;
④若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
其中为真命题的是( )
①若m?α,l∩α=A,点A∉m,则l与m不共面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l∥α,m∥β,α∥β,则l∥m;
④若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
其中为真命题的是( )
A. | ①③④ | B. | ②③④ | C. | ①②④ | D. | ①②③ |
9.函数f(x)=Asin(ωx+φ),(0<φ<$\frac{π}{2}$)的部分图象如图所示,则( )
A. | A=2,φ=$\frac{π}{4}$ | B. | A=2,φ=$\frac{π}{6}$ | C. | A=2$\sqrt{2}$,φ=$\frac{π}{3}$ | D. | A=2$\sqrt{2}$,φ=$\frac{π}{6}$ |
13.设不等式组$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤1}\end{array}\right.$表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是( )
A. | $\frac{π}{4}$ | B. | $\frac{π-\sqrt{3}}{6}$ | C. | $\frac{\sqrt{3}+3π}{12}$ | D. | $\frac{3\sqrt{3}+2π}{18}$ |
14.已知实数x,y满足条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{x+y-3≥0}\\{y-1≥0}\end{array}\right.$,则目标函数z=$\frac{y}{x}$+$\frac{x}{y}$的取值范围为( )
A. | [2,$\frac{5}{2}$] | B. | [$\frac{5}{2}$,$\frac{10}{3}$] | C. | [2,$\frac{10}{3}$] | D. | [$\frac{1}{3}$,2] |