题目内容

(2013•普陀区二模)若函数f(x)=x2+ax+1是偶函数,则函数y=
f(x)|x|
的最小值为
2
2
分析:依题意,可求得a=0,从而可得y=
x2+1
|x|
=|x|+
1
|x|
,利用基本不等式即可求得所求函数的最小值.
解答:解:∵f(x)=x2+ax+1是偶函数,
∴f(-x)=f(x),
∴a=0.
∴f(x)=x2+1,
∴y=
x2+1
|x|
=|x|+
1
|x|
≥2(当且仅当x=±1时取“=”).
∴函数y=
f(x)
|x|
的最小值为2.
故答案为:2.
点评:本题考查基本不等式,考查函数的奇偶性,求得a=0是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网