题目内容
求满足下列条件的直线方程:
(1)经过两条直线和的交点,且平行于直线;
(2)经过两条直线和的交点,且垂直于直线.
(1)(2)
解析试题分析:(1)联立两直线方程
得
即两直线交点坐标为. 2分
∵所求直线与已知直线平行.
∴设直线方程;将交点坐标代入直线方程,解得.
∴直线. 5分
(2)联立两直线方程
得
即两直线交点坐标为. 7分
∵所求直线与已知直线垂直.
∴设直线方程;将交点坐标代入直线方程,解得.
∴直线. 10分
考点:直线方程及交点与平行垂直的位置关系
点评:两直线的交点即方程组的解,两直线平行,斜率相等,两直线垂直,斜率相乘等于
练习册系列答案
相关题目