题目内容

直线l:kx+(1-k)y-3=0经过的定点是(  )
A、(0,1)
B、(3,3)
C、(1,-3)
D、(1,1)
考点:恒过定点的直线
专题:直线与圆
分析:把直线方程中参数m分离出来,再利用m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得定点的坐标.
解答: 解:直线l:kx+(1-k)y-3=0,即 k(x-y)+y-3=0,令
x-y=0
y-3=0
,求得x=y=3,
故直线l:kx+(1-k)y-3=0经过定点(3,3),
故选:B.
点评:本题主要考查直线过定点问题,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网