题目内容
【题目】在海岸A处,发现北偏东45°方向,距A处( ﹣1)海里的B处有一艘走私船,在A处北偏西75°方向,距A处2海里的C处的缉私船奉命以10 海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B处向北偏东30°的方向逃窜,问缉私船沿什么方向能最快追上走私船,并求出所需要的时间.
【答案】解:如图所示,设缉私船追上走私船需t小时, 则有CD= ,BD=10t.在△ABC中,
∵AB= ﹣1,AC=2,
∠BAC=45°+75°=120°.
根据余弦定理可求得BC= .
∠CBD=90°+30°=120°.
在△BCD中,根据正弦定理可得
sin∠BCD= ,
∵∠CBD=120°,∴∠BCD=30°,∠BDC=30°,
∴BD=BC= ,则有
10t= ,t= =0.245(小时)=14.7(分钟).
所以缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.
【解析】设缉私船追上走私船需t小时,进而可表示出CD和BD,进而在△ABC中利用余弦定理求得BC,进而在△BCD中,根据正弦定理可求得sin∠BCD的值,进而求得∠BDC=∠BCD=30°进而求得BD,进而利用BD=10t求得t.
练习册系列答案
相关题目
【题目】对一批共50件的某电器进行分类检测,其重量(克)统计如下:
质量段 | [80,85) | [85,90) | [90,95) | [95,100] |
件数 | 5 | a | 15 | b |
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A“型2件
(1)从该批电器中任选1件,求其为“B”型的概率;
(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.