题目内容

7.正方体ABCD-A1B1C1D1中,E、F分别AB、C1D1的中点,则A1B1与平面A1EF所成角的正切值为(  )
A.2B.$\sqrt{2}$C.1D.$\sqrt{3}$

分析 首先明确∠B1A1C就是A1B1与平面A1ECF所成的角.然后解三角形,求A1B1与平面A1ECF所成角的正切值

解答 解:连接C1B,∵E、F分别为AB与C1D1的中点,
∴C1F=BE.又C1F∥BE,
∴C1FEB为平行四边形.∴C1B∥EF.而C1B⊥B1C,
∴EF⊥B1C.又四边形A1ECF是菱形,∴EF⊥A1C.∴EF⊥面A1B1C.
又EF?平面A1ECF,
∴平面A1B1C⊥平面A1ECF.∴B1在平面A1ECF上的射影在线段A1C上.
∴∠B1A1C就是A1B1与平面A1ECF所成的角.
∵A1B1⊥B1C,在Rt△A1B1C中,tan∠B1A1C=$\frac{{B}_{1}C}{{A}_{1}{B}_{1}}$=$\sqrt{2}$.
∴A1B1与平面A1ECF所成角的正切值为$\sqrt{2}$;
故选:B

点评 本题考查直线与平面所成的角,直线与平面垂直的判定,关键是将空间角转化为平面角解答;考查学生空间想象能力,逻辑思维能力,是中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网