题目内容
甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是________.
0.96
【解析】三人中至少有一人达标的概率为1-(1-0.8)×(1-0.6)×(1-0.5)=0.96.
练习册系列答案
相关题目
在一次数学测验后,班级学委对选答题的选题情况进行了统计,如下表:
| 几何证明选讲 | 坐标系与 参数方程 | 不等式选讲 | 合计 |
男同学(人数) | 12 | 4 | 6 | 22 |
女同学(人数) | 0 | 8 | 12 | 20 |
合计 | 12 | 12 | 18 | 42 |
(1)在统计结果中,如果把几何证明选讲和坐标系与参数方程称为几何类,把不等式选讲称为代数类,我们可以得到如下2×2列联表:
| 几何类 | 代数类 | 总计 |
男同学(人数) | 16 | 6 | 22 |
女同学(人数) | 8 | 12 | 20 |
总计 | 24 | 18 | 42 |
据此统计你是否认为选做“几何类”或“代数类”与性别有关?若有关,你有多大的把握?
(2)在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知这名班级学委和两名数学科代表都在选做“不等式选讲”的同学中.
①求在这名班级学委被选中的条件下,两名数学科代表也被选中的概率;
②记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).
下面临界值表仅供参考:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:K2=