题目内容

已知f(x)=
m
n
,设ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
n
=(cosω x-sinω x,  2sinω x)
,若f(x)图象中相邻的两条对称轴间的距离等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分别为角A,B,C的对边,a=
3
S△ABC=
3
2
.当f(A)=1时,求b,c的值.
(1)∵f(x)=cos2ωx-sin2ωx+2
3
sinωxcosωx

=cos2ωx+
3
sin2ωx
=2sin(2ωx+
π
6
)

又  
T
2
=
π
2
,解得ω=1;
(2)∵f(A)=1,∴2sin(2A+
π
6
)=1

由 0<A<π得 A=
π
3

又∵
a2=b2+c2-2bccosA
S△ABC=
1
2
bcsinA

3=b2+c2-2bccos
π
3
3
2
=
1
2
bcsin
π
3

解得
b=2
c=1
b=1
c=2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网