题目内容
已知椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_ST/1.png)
【答案】分析:先利用条件求出F,P的坐标和椭圆另一焦点坐标,进而求出|PE|,|PF|和|EF|,再利用椭圆定义求出2a和2c就可找到椭圆的离心率.
解答:
解:因为抛物线y2=2px(p>0)的焦点F为(
,0),设椭圆另一焦点为E.
当x=
时代入抛物线方程得y=±p.又因为PQ经过焦点F,所以P(
,p)且PF⊥OF.
所以|PE|=
=
p,|PF|=P.|EF|=p.
故2a=
p+p,2c=p.e=
=
-1.
故答案为:
-1.
点评:本题求椭圆的离心率.在求椭圆的离心率时,一般是求出a,c,也可以求出b,c或b,a;再利用a,b,c之间的关系求a,c即可求出椭圆的离心率.
解答:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/images0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/0.png)
当x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/2.png)
所以|PE|=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/4.png)
故2a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/7.png)
故答案为:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024181430776561423/SYS201310241814307765614008_DA/8.png)
点评:本题求椭圆的离心率.在求椭圆的离心率时,一般是求出a,c,也可以求出b,c或b,a;再利用a,b,c之间的关系求a,c即可求出椭圆的离心率.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目