题目内容
设函数f(x)=x3+3x2+6x+4,a,b都是实数,且f(a)=14,f(b)=-14,则a+b的值为( )
分析:根据f(x)=x3+3x2+6x+4可将f(x)变形为f(x)=(x+1)3+3(x+1)然后根据f(a)+f(b)=0可得(a+1)2+3(a+1)+(b+1)2+3(b+1)=0注意到此方程的对称性可构造函数F(x)=x3+3x则上式可变形为F(a+1)=-F(b+1)故需判断出函数F(x)的奇偶性和单调性即可求解.
解答:解答:解:∵f(x)=x3+3x2+6x+4
∴f(x)=(x+1)3+3(x+1)
∵f(a)+f(b)=0
∴(a+1)2+3(a+1)+(b+1)2+3(b+1)=0①
令F(x)=x3+3x,
则F(-x)=-F(x)
∴F(x)为奇函数
∴①式可变为F(a+1)=-F(b+1)
即F(a+1)=F(-b-1)
∵F(x)=x3+3x为单调递增函数
∴a+1=-b-1
∴a+b=-2
故选D
∴f(x)=(x+1)3+3(x+1)
∵f(a)+f(b)=0
∴(a+1)2+3(a+1)+(b+1)2+3(b+1)=0①
令F(x)=x3+3x,
则F(-x)=-F(x)
∴F(x)为奇函数
∴①式可变为F(a+1)=-F(b+1)
即F(a+1)=F(-b-1)
∵F(x)=x3+3x为单调递增函数
∴a+1=-b-1
∴a+b=-2
故选D
点评:本题主要考查利用函数的单调性和奇偶性进行求值.解题的关键是先将函数f(x)=x3+3x2+6x+4变形为f(x)=(x+1)3+3(x+1)(这也是求解此题的突破点)然后利用所得到的式子①构造函数F(x)=x3+3x最后利用函数F(x)的单调性奇偶性即可求解!
练习册系列答案
相关题目