题目内容

【题目】已知函数在点处的切线方程为.

(1)求函数的解析式;

(2)求函数的单调区间和极值.

【答案】(1);(2)见解析.

【解析】试题分析:(1)根据导数几何意义得,再与联立方程组解得 (2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值

试题解析:(1),切线为,即斜率,纵坐标

,解得

解析式

(2) ,定义域为

得到单增,在单减,在单增

极大值,极小值.

型】解答
束】
20

【题目】如图:在四棱锥中,底面为菱形,且 底面

上点,且平面.

(1)求证: ;(2)求三棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据底面,再根据线面垂直判定定理得即可得结果(2)记的交点为,则BD 为高,三角形POE为底,根据锥体体积公式求体积

试题解析:(1)

(2)记的交点为,连接

平面

中:

中: ,则,即

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网