题目内容
【题目】已知函数在点处的切线方程为.
(1)求函数的解析式;
(2)求函数的单调区间和极值.
【答案】(1);(2)见解析.
【解析】试题分析:(1)根据导数几何意义得,再与联立方程组解得, (2)先函数导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值
试题解析:(1),切线为,即斜率,纵坐标
即, ,解得,
解析式
(2) ,定义域为
得到在单增,在单减,在单增
极大值,极小值.
【题型】解答题
【结束】
20
【题目】如图:在四棱锥中,底面为菱形,且, 底面,
, , 是上点,且平面.
(1)求证: ;(2)求三棱锥的体积.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根据菱形性质得对角线相互垂直,根据底面得,再根据线面垂直判定定理得面即可得结果(2)记与的交点为,则BD 为高,三角形POE为底,根据锥体体积公式求体积
试题解析:(1)面
(2)记与的交点为,连接
平面
在中: , , ,
在中: , ,则,即,
则
练习册系列答案
相关题目