题目内容

【题目】已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n1}的前n项和(n∈N+).

【答案】解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.
由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.
又因为q>0,解得q=2.所以,bn=2n
由b3=a4﹣2a1 , 可得3d﹣a1=8①.
由S11=11b4 , 可得a1+5d=16②,
联立①②,解得a1=1,d=3,由此可得an=3n﹣2.
所以,数列{an}的通项公式为an=3n﹣2,数列{bn}的通项公式为bn=2n
(Ⅱ)设数列{a2nb2n1}的前n项和为Tn
由a2n=6n﹣2,b2n1= 4n , 有a2nb2n1=(3n﹣1)4n
故Tn=2×4+5×42+8×43+…+(3n﹣1)4n
4Tn=2×42+5×43+8×44+…+(3n﹣1)4n+1
上述两式相减,得﹣3Tn=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1
= =﹣(3n﹣2)4n+1﹣8
得Tn=
所以,数列{a2nb2n1}的前n项和为
【解析】(Ⅰ)设出公差与公比,利用已知条件求出公差与公比,然后求解{an}和{bn}的通项公式;
(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网