题目内容
(本小题共13分)
为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.
(Ⅰ)求;
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工
人不在同一组的概率是多少?
(Ⅰ)根据直方图可知产品件数在内的人数为
,则(位). ---------------- 6分
(Ⅱ)根据直方图可知产品件数在 ,,组内的人数分别为2,4.
设这2位工人不在同一组为A事件,则.
答:选取这2人不在同组的概率为. ---------------- 13分
解析
练习册系列答案
相关题目
(本题14分)
高二年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组 | 频数 | 频率 |
① | 0. 025 | |
| 0.050 | |
| 0.200 | |
12 | 0.300 | |
| 0.275 | |
4 | ② | |
[145,155] | | 0.050 |
合计 | | ③ |
|
(1)根据上面图表,①②③处的数值分别为 ▲ 、 ▲ 、 ▲ ;
(2)在所给的坐标系中画出[85,155]的频率分布直方图;
(3)根据题中信息估计总体落在[125,155]中的概率.
(本小题满分14分)
为积极响应国家“家电下乡”政策的号召,某厂家把总价值为10万元的A、B两种型号的电视机投放市场,并且全部被农民购买。若投放的A、B两种型号的电视机价值都不低于1万元,农民购买A、B两种型号的电视机将按电视机价值的一定比例给予补贴,补贴方案如下表所示,设投放市场的A、B型号电视机的价值分别为万元,万元,农民得到的补贴为万元,解答以下问题.
| A型号 | B型号 |
电视机价值(万元) | ||
农民获得补贴(万元) |
(1) 用的代数式表示
(2) 当取何值时, 取最大值并求出其最大值(精确到0.1,参考数据:)
在的展开式中,x6的系数是( )
A.﹣27 | B.27 | C.﹣9 | D.9 |