题目内容
在△ABC中,a、b、c分别是角A、B、C的对边,且=-.
(1)求角B的大小;
(2)若b=,a+c=4,求△ABC的面积.
(1)求角B的大小;
(2)若b=,a+c=4,求△ABC的面积.
(1)B=π.
(2)S△ABC=acsin B=.
(2)S△ABC=acsin B=.
此题考查了正弦定理,余弦定理及三角函数的恒等变形.熟练掌握定理及公式是解本题的关键.利用正弦定理表示出a,b及c是第一问的突破点.
(1)根据正弦定理表示出a,b及c,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出角B的度数;
(2)由(1)中得到角B的度数求出sinB和cosB的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b,a+c及cosB的值代入求出ac的值,然后利用三角形的面积公式表示出△ABC的面积,把ac与sinB的值代入即可求出值
(1)根据正弦定理表示出a,b及c,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出角B的度数;
(2)由(1)中得到角B的度数求出sinB和cosB的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b,a+c及cosB的值代入求出ac的值,然后利用三角形的面积公式表示出△ABC的面积,把ac与sinB的值代入即可求出值
练习册系列答案
相关题目